Geodata with SQLite
SQLite offers the R*Tree module for working with range queries useful when dealing with geodata. An additional Geopoly interface, built on top of R*Tree further facilitates geospatial analysis. While the common usecase for R*Tree and Geopoly is with poly data, I needed to maintain and analyze point-data. Here is what I learned.
Note: I am using nodejs
for scripting all this, but the SQL can be used directly or within any programming language. All formulas are approximate (the meters-to-latitude conversion approximates the radius of a spherical earth, and the lng/lat checks in the SQL below are increasingly meaningless above 85-87 degrees of latitude; but the concept still remains the same, so change the values as appropriate).
import Database from 'better-sqlite3';
const db = new Database('geo.sqlite');
// the chance module allows creating synthetic data easily
// for testing. See https://chancejs.com/index.html for details
import Chance from 'chance';
const chance = Chance();
const createTables = () => {
// create table to hold the data with basic sanity checks
db.prepare(`CREATE TABLE IF NOT EXISTS t (
id INTEGER PRIMARY KEY,
longitude REAL,
latitude REAL,
desc TEXT,
validGeo BOOLEAN GENERATED ALWAYS AS (
typeof(longitude) = 'real' AND
abs(longitude) <= 180 AND
typeof(latitude) = 'real' AND
abs(latitude) < 90
) STORED
)`).run();
// create the two virtual tables related to the main table
// via the id PRIMARY KEY
db.prepare(`CREATE VIRTUAL TABLE IF NOT EXISTS tr USING rtree (
id,
minX, minY, -- bottom-left corner of the bounding box
maxX, maxY, -- top-right corner of the bounding box
+t_id -- references t(id)
)`).run();
db.prepare(`CREATE VIRTUAL TABLE IF NOT EXISTS tg USING geopoly (
t_id -- references t(id)
)`)
.run();
}
A basic, rectangular poly looks like so (note that longitude is x
and latitude is y
)
It is possible to store points in an R*Tree virtual table by making the bottom-left and top-right corners of a box the same, that is, a square of side = 0. However, while I was able to store the same in a Geopoly table as well, the geopoly_within()
function didn't return any result. So I decided to make a tiny box of 5 meters around every point and store those polys in the virtual tables. The only problem is that the length of each degree of latitude in meters varies with the latitude (it gets smaller as one moves away from the equator toward the poles). The formula abs(1/(40075017*cos(latitude)/360))
returns meters for any given latitude (40075017 is the radius in meters of a perfectly spherical earth). Note that the "square" of 5m side is increasingly distorted trapezoidally as one moves away from the equator.
Note: I am mixing meters and lng/lat because that is how we tend to use them in real life -- when talking of points, we refer to them with their lng/lat coords (actually, in spoken English we tend to say lat/lng even though we refer to cartesian coords as x/y), and when talking of distances, we speak in meters. I want to be able to answer queries such as, "Find all the points within x meters of (this) longitude/latitude."
Triggers populate the virtual tables as the main table gets loaded with data. The geopoly_regular()
function below makes a 4
sided poly of abs(5/(40075017*cos(latitude)/360))
meters centered at [longitude, latitude]
. The function geopoly_bbox()
returns the bounding box of the poly, and geopoly_json()
converts the bbox into json. Then json_extract()
pulls out the bottom-left and top-right corners.
const createTriggers = () => {
db.prepare(`CREATE TRIGGER IF NOT EXISTS aftInsT
AFTER INSERT ON t
WHEN new.validGeo = 1
BEGIN
-- insert new entry in the rtree table
INSERT INTO tr (
minX, maxX, minY, maxY,
t_id
)
SELECT
json_extract(g, '$[0][0]') AS minX,
json_extract(g, '$[2][0]') AS maxX,
json_extract(g, '$[0][1]') AS minY,
json_extract(g, '$[2][1]') AS maxY,
id
FROM (
SELECT
geopoly_json(
geopoly_bbox(
geopoly_regular(
new.longitude,
new.latitude,
abs(5/(40075017*cos(new.latitude)/360)),
4
)
)
) AS g,
new.id AS id
);
-- insert new entry in the geopoly table
INSERT INTO tg (
_shape,
t_id
)
VALUES (
-- shape
geopoly_bbox(
geopoly_regular(
new.longitude,
new.latitude,
abs(5/(40075017*cos(new.latitude)/360)),
4
)
),
new.id
);
END;`).run();
}
Now we load the main table which automatically populates the virtual tables.
const loadTable = () => {
const stm = db.prepare(`INSERT INTO t (longitude, latitude, desc)
VALUES (@longitude, @latitude, @desc)`);
// insert 100 random points
const data = [...Array(100).keys()].map(i => {
return {
longitude: chance.longitude(),
latitude : chance.latitude(),
desc : chance.sentence({ words: 5 })
}
});
for (const row of data) {
stm.run(row);
}
}
// helper function to make polys easily
const geopolyRegular = (longitude, latitude, R, N) => {
return `geopoly_regular(
${longitude},
${latitude},
abs(${R}/(40075017*cos(${latitude})/360)),
${N}
)`
};
// helper function to get bbox corners easily
const jsonExt = (pos, longitude, latitude, R, N) => {
const corners = {
minX: '$[0][0]',
maxX: '$[2][0]',
minY: '$[0][1]',
maxY: '$[2][1]'
};
return `json_extract(
geopoly_json(
geopoly_bbox(
${geopolyRegular(longitude, latitude, R, N)}
)
),
'${corners[pos]}'
)`;
};
Since minX/minY
are the same as maxX/maxY
in our data, we need to do the WHERE … BETWEEN
comparison only for one of those pairs.
const selectData = () => {
const obj = {
latitude: 0,
longitude: 0,
R: 111319.458 * 1,
N: 4
};
const resTr = db.prepare(`SELECT t.id, t.longitude, t.latitude, t.desc
FROM t JOIN tr ON t.id = tr.t_id
WHERE
minX BETWEEN
${jsonExt('minX', '@longitude', '@latitude', '@R', '@N')} AND
${jsonExt('maxX', '@longitude', '@latitude', '@R', '@N')} AND
minY BETWEEN
${jsonExt('minY', '@longitude', '@latitude', '@R', '@N')} AND
${jsonExt('maxY', '@longitude', '@latitude', '@R', '@N')}`)
.all(obj);
const resTg = db.prepare(`SELECT t.id, t.longitude, t.latitude, t.desc
FROM t JOIN tg ON t.id = tg.t_id
WHERE geopoly_within(
tg._shape,
geopoly_bbox(
${geopolyRegular('@longitude', '@latitude', '@R', '@N')}
)
)`).all(obj);
console.log('rtree\n', resTr, '\ngeopoly\n', resTg);
}
createTables();
loadTable();
selectData();
Running the above script gives me the exact same answer for both R*Tree and Geopoly tables.
// output of `selectData()`
rtree
[
{
id: 150,
longitude: 0.47599,
latitude: 0.23464,
desc: 'Ge uc irejiphe se meluin.'
},
{
id: 772,
longitude: 0.90166,
latitude: -0.80421,
desc: 'Gibet wefo wad bip vowutzoz.'
},
{
id: 813,
longitude: 0.22911,
latitude: 0.39079,
desc: 'Mewu sekjutfir fe kez vehpo.'
},
{
id: 986,
longitude: -0.48092,
latitude: 0.72125,
desc: 'Lahsun li odagaku ap fi.'
}
]
geopoly
[
{
id: 150,
longitude: 0.47599,
latitude: 0.23464,
desc: 'Ge uc irejiphe se meluin.'
},
{
id: 772,
longitude: 0.90166,
latitude: -0.80421,
desc: 'Gibet wefo wad bip vowutzoz.'
},
{
id: 813,
longitude: 0.22911,
latitude: 0.39079,
desc: 'Mewu sekjutfir fe kez vehpo.'
},
{
id: 986,
longitude: -0.48092,
latitude: 0.72125,
desc: 'Lahsun li odagaku ap fi.'
}
]
I am free to choose whichever approach for my implementation. I like the Geopoly interface more as it gives me the advantage of providing irregular polygons for selection even though internally Geopoly converts them to bboxes since it is really built on top of R*Tree.
Note that if I have different points with the same coordinates (entirely possible in real world data, for example, residents in a multistory building), then it would be possible to save some space by storing only unique pairs in the virtual tables and joining them with the main table via a FK. This increases the complexity of the tables and data-insertion, but may save some space if the number of points is very large.
Acknowledgements: With help from